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Ward-Type Identities for the Two-Dimensional
Anderson Model at Weak Disorder
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Using the particular momentum conservation laws in dimension =2, we
rewrite the Anderson model in terms of low-momentum long-range fields, at the
price of introducing electron loops. The corresponding loops satisfy a Ward-
type identity, hence are much smaller than expected. This fact should be useful
for the study of the weak-coupling model in the middle of the spectrum of the
free Hamiltonian.
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1. INTRODUCTION
We consider a continuous Anderson model in dimension d = 2. The model
is defined through the following Hamiltonian

H=—4+V (1)

where V is a Gaussian random field which is a regularized white noise.
We are interested in the density of states at weak disorder (1 << 1) and

in the free spectrum (at energy E>0). It is well known‘V that because of

ergodicity, the density of states is a deterministic quantity given by

p(E)=% lim lim E[Im G(E+ ic;0,0)] (2)

g0 4>
where G is the resolvent, or Green’s function, of the system

G(z)=(H-z)"! (3)
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The limit A — oo stands for the fact that we must work in a finite volume
to have well defined quantities and then take the thermodynamic limit.

Thus the problem amounts to studying the mean Green’s function.
Perturbations suggest that

1

F[G(E+i0)] ~ ——— e
LGB+ )~

(4)

where the self-energy 2 is given at leading order by the Born approxima-
tion, > ?

1

C:
pz—E_ia_ZBorn

(5)
Zpom = AHVCV) (6)

which yields a finite imaginary part of order 42

In this paper, we derive a Ward type identity which should allow to
control the mean Green’s function for initial imaginary part of order A2*¢,
i.e,, much smaller than the expected final imaginary part. This is not enough
to go to the limit o — 0 which is in fact equivalent to o ~ 1* thanks to spec-
tral averaging techniques™ or equivalently complex translation of the
potential.®® Nevertheless, we think that this kind of identity should play a
role in studying the mean Green’s function of the model and in proving its
expected long range decay.

We give first a heuristic presentation of this identity which is a little
bit complicated. Then we will derive it in a simplified model in a single
cube of size 2 ~27% This result, when combined with a polymer expansion
of the resolvent would allow to control the thermodynamic limit of the
model with ¢ =4%"* in the same way than refs. 5 and 6.

2. PHASE SPACE PICTURE AND MATRIX MODEL

Our study is based on a phase space multiscale analysis.>"% We
divide the momentum space into slices such that in the jth slice 2, we
have M ~/~1 < |p*— E| < M~/ for some integer M > 2. Then the real space
is divided into lattices D, of cubes of dual size M.

The point is that the potential V seen as an operator V has a kernel
in momentum space given by

Vip,q)=V(p—q) (7)
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When p and g are restricted to low slices, i.e. very close to p> = E, knowing
the momentum transfer p — ¢ allows to recover back the pair {p, —¢}®?
so that the potential has a very strong matrix flavor.(”

We call ; a smoothed projector on the slice 2 that we further divide
into angular sectors S/ of width M ~/2 corresponding to some n,. We
write & for the opposite sector to « and we introduce also the notation

Hi= Z ur (8)
k>

For any operator 4 we write
A¥ = n; AN 9)

Finally, for any lattice D; of cubes 4, we can make an orthogonal decom-
position of the field V into a sum of fields ¥, the support of ¥, being on
a close neighborhood of 4.*) Then, using the matrix aspect of the poten-
tial, we can derive the following estimates.*®

Lemma 1. There are constants K, and K, such that for all j<k,
az1and 4eD,

gl mkir-in

PVl = aKy, M ~?) < Kye (10)

Lemma 2 (Tadpole-free operators). There are constants K,
and K, such that for all j<k, a>1and 4,4'€eD,

P(:VECVIE| > ak, M ~*=D2) < Kye=a" M (11)
a4 a
where : : stands for the Wick ordering
VHCVIE = VR CYIF_(VECVIE (12)

Lemma 3 (Almost diagonal operators). There are constants
K, and K, such that for all j<k, 0<r<l,a>1and 4eD,

_a? pkmiB—ne

POV | 2 ak, M =P < Kye (13)

where

(r)ngE Z ”aJVA’?ﬂk+ Z ﬂ“JVA”ﬁk (14)

lc— Bl < M—172 la—pt< M2
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3. RESULT

We are looking at a simplified model in a single cube: in R?/A=27¢7Z?
we consider the following Hamiltonian

H=—A4+4iV (15)

where V is a Gaussian random field with translation invariant covariance
Ee L (R?) such that ¢'?e%P(R*) (the square root being taken in
operator sense). The result could be extended to ¢ € #(R?) but the devel-
opment would be much heavier.

We are interested in computing the mean Green’s function

G(E—ia)=jdﬂ(V)(H—E—ia)—l (16)
for which we have the following result

Theorem 1 {Ward type identity). There exists v>0 such that
for all o < A?

_ 12+v 3 l
HG(E)—CIISO(I)< ) ! (17)
ag g

where C is the renormalized propagator at leading order (Born approxima-
tion).

Moreover, we can iterate the development in order to obtain an
asymptotic expansion to all orders.

This result together with a polymer expansion®®’ would allow to control
the thermodynamic limit for imaginary part

o> A2t (18)

Therefore we can investigate the mean Green’s function up to a region with
imaginary part much smaller than the expected final one. We cannot for
the moment go to the real axis which would require to have v>1,
Nevertheless, we think that this kind of identity should play a role in the
study of the mean Green’s function and of the density of states.

4. HEURISTIC PRESENTATION

Let us assume that we are working in the region of momenta
|p*— E| <M ), where
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Hh=(1—=v)Jj, (19)

APlog ™"~ M (20)

We are looking at the off-diagonal part of the potential, i.e., the V,,’s
such that « is quite different from f or f =7z + . We know that in this case,
sectors are preserved up to M % and even better.'® If we introduce a
counter-term ¢ and perform one step of perturbation, e.g., by putting an

interpolation parameter on the potential and the counter-term, we get a
remainder term which looks like

R—_<—§—>—<—ii> (21)

We can integrate the V by parts and get

R=z<_éﬁ_ >—<—i—> (22)

Sector conservation tells us that there are two possible configurations:

/”~\\
_51‘7;__ =——— (23)
a B a p a o BB
I
[}
= —— (24)

We used the fact that V being almost ultra-local we can identify both
ends of its propagator (the wavy line) and replace it by the dashed line
which corresponds to the low momentum channel. Furthermore, for the
first term, we used

(nyGne)x, x)=(n,Gn.)" (x, X)=(17,Gng)x, X) (25)
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where A4* stands for the transposed operator, whose kernel is
A'(x, y)=A(p, x) (26)

The first configuration corresponds to the insertion of two fields of
very low momentum, i.¢., to almost diagonal operators, and as such is very
small. Thus we just need to see how the second term, which is the insertion
of a tadpole, will kill the counter-term, at least at leading order.

First, we can remark that if « and f are far enough from each other,
the momentum flowing into the loop has a size M ~/, being at the intersec-
tion of two tubes of size M ~4/2x M =/, But we can go further: if all the
incoming legs at the vertex are in the “very low” slice X, , the ingoing
momentum has a size M ~/. This means that either we have a very small
momentum flowing into the loop or one of the four legs is “high,” which
means that |p?— E| is large. This allows to earn a small factor.

If we set the counter-term equal to the tadpole with the bare

propagator C,, we are led to study
gi 8

Iyk) = <—_k£—> (27)

a o

where the slashed line stands for G — C,. In momentum space the contribu-
tion of the loop is

[ dp npp)nylp +1XG = Cop +k, p) (28)

The key point is then to notice that when p is close to k, the center of the
sector f/ in momentum space, one can write

2k.ky+k>=[(p+k)y’—E—ic]—[p’—E—io] —2k.(p—kyp) (29)

=Co (p+k)=C5(p)+ O(lk| |p—kp)) (30)
Using the resolvent identity

G—Cy=—CydVG=—GiVC, (31)
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we get

(2k.ky+k*) Ty (k) = < ¢ - N > (32)

where the thick line stands for 7,,.
The perturbative reformulation of this identity is the following, Starting
from a vertex function

F(f{(p,k)=C,,(p) Cylp+k) (33)
we have the identity

This looks very much like a perturbative Ward identity in quantum elec-
trodynamics where we express the vertex function I', ; (between an elec-
tron, a positron and a photon) in terms of the difference of two electron
propagators.

Once again, we integrate by parts the V" which has been taken down.
This leads to six possible graphs

A B A 4

Then we use sector conservation and perform various unfolding opera-
tions. In order to illustrate the process, let us show how it works on the
following typical term (using the fact that a wavy line is almost a J function)

20
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In the end we obtain 12 terms which are

(2k.k g+ Kk2) Ty (k)
¥ - //7\\ 93
z<——9—¢-’-—b—— +—¢g‘—-’—6— + ———
\\~—/ﬂ, \lz A
Aﬁ //"'\\ ﬁ /-’-\\
+ ¢ + 1 + a3
it ', v /,’

ﬂ:A e L
N S S W ‘,:f, (36)
\g\_,’ \ /'

We have two types of graphs:

o graphs without electron loops, containing very low momentum field
insertions,

¢ and graphs with remaining electron loops.

The graphs in the first category are small. In the second category, the 3rd,
4th, 9th and 10th graphs form two pairs which almost compensate each
other (3-9 and 4-10).

The point is that when all the incoming legs at the various vertices are
“very low,” the momenta flowing into the loops have size M ~%. This
implies that the dashed lines stand for propagators which decay on a length
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scale M”%. But 5, (the thick line) decays on a scale M/ << M, therefore
it is almost-local with respect to the scale M~ and we can approximate it
by a point. This means that the graphs number 3 and 9 as well as the num-
ber 4 and 10 compensate each other, up to a gradient term in M ~o=J),

This conclude our heuristic description of the reasons for which
Theorem 1 holds. The next section is devoted to the proof.

5. PROOF OF THEOREM 1

5.1. Notations
First of all, we introduce various notations

o We define | =5, =#, and T =5,=(1—-7;), so that every
operator A can be written

A= A1+ A+ A+ |4 (37)
e for 0<r<1 to be fixed later, we define
anfela—pl<M " (38)
¢ for K= 0O(1) we note
a~ B> |a— Bl < KM 02 (39)
o finally we introduce

Ja=(1=v3) jo>j; (40)

5.2. Starting the Development

We define the counter-term through the self-consistent equation

Z(x—y)=2%(x—y) C(x—y) (41)
1
R - “2)
Then we set
1
G(1) =— (43)

pPP—E—ig— X+ AV +1X
G(1)=E[G(1)] (44)
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so that we can write

G'=6(1)=G(0)+j1a,G_(z)dt=C+fla,G_(t)dt (45)
0

0
Then our problem reduces to the study of

3,G=—<LGAV+22) G (46)

=2t J dx dy{ G(., x)[ A%(x, y) G(x, y) — Z(x, ¥)]1 G(p,.)> (47)

=21de dy< G(., x)[A%¢(x, p)(G—C)x, 1 G(p.)> (48)

=21{G[ A% % (G— C)] G> (49)

where we have integrated the V by parts from (46) to (47).
If we plug in the “high” and “low” slices we get

0,G= Yy 2KGn [APExny (G—C)ny]1n,GD (50)
iemigefl, 1)
= Y 3G, (51)
i ig€{l, 1}

5.3. Higher Part

We can quite easily deal with the case (i;,..., is) #( | ,.., | ) because we
have a high leg.

Lemma 4.

_ A2 1
S 18,6, <0 <~> « L (52)
(s i) # (Lo |) g a

Proof. We start with
G(t)—C=—CAV+122) G(1) (53)
then, we write the covariance ¢ as the integration of two insertions of an

auxiliary field U.

0,Gyyiy= =21 | G, (AU) 0, COAV + £2) G (AU) 1, G du(V) du( U)
(54)
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At this point we perform a large field versus small field decomposi-
tion®*®

l=¢(U, V)+(1—-e) (U, V) (55)

where ¢ is a smooth function which forces

| Vﬂ?” < O(1) M 72 M1 max((y =42, 0) (56)
” UjIE” S0(1)M'jl/thlmax((fl_k)/2>0) (57)
I UEJ'CJ'VJ'EH < O(1) M (k=i pge max(s— 1, 0] (58)

The last condition is possible because U and V cannot contract
together, therefore we can use Lemma 2 on tadpole-free operators, Thanks
to Lemmas 1 and 2, we find that the large field contribution will be small,
of order

EL18,G, ..., I (1 —&)1< O(1) rze—“‘“'“‘”’x% (59)
g

for some constant x.

In the small field region, we will use the fact that we have a high leg
so that in some sense we can make perturbations. Suppose that #,, is the
high leg at scale k,, the operator AU% will have a size AM ~%/2>> 42, But
if we perform a resolvent expansion on AU4G we will get AUBCRAVG
thus we earn an extra factor AU%%C* whose norm is AM*/2 << 1. Then we
can iterate the process until either we fall back to a scale of order j, or we
have earned enough small factors.

Lemma 5 (Stairway expansion}:

(1=n,)G= Y Ch[1 —(122+/1V17j0) G]

kg<m

— Y Chavchl —(t22+/1V;7,;1) G]
ky<m
k(l)<j0
+ Y CRAVCMAVCR[1 — (P2 + Vi) Gl — -+ (60)
kog<m

0<k)<jy
ky <ky

where C¥=#,C and n5=1.
Of course, we have a similar result for G(1 —#,;) by expanding to the
left.
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Proof. ‘The proofis by induction on m thanks to the resolvent identity
G=C—-C(rPZ+iV)G (61)

that we write as

n,G=C"[1—C(’E+iVy,) G]— Y. CPAVn,G 1 (62)

g <p

In Eq. (60) we can group the various terms according to whether they
end by a C, a 2G or a VG. Then we can introduce a diagrammatic
representation

ko<jo
(1—7,)G=v—— A4, +Ay+ A (63)
*"—
—e !
[
... |
" I—-
e :
ko : onm *—e
A,=—e +—e +o+ —@ (64)
[
1 jo
]

Ay and A, can be represented in the same way by changing the rightmost
term.

We apply the stairway expansion on each leg which has its momentum
above the scale j, and is not linked to a long enough stairway. This allows
to show that each field insertion behaves like O(1} A% Furthermore, we
earn a factor AM/\/2M™//2 L Jn—" thanks to the AU which have a high
leg. Indeed, the corresponding insertion of AU will transform into the inser-
tion of a sum of stairways. The 4, part has the following form:

¢ the second order insertion is

ko
r—e
AUV
A=) -t Ll (65)

Jo
ko<1
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Since U and ¥V cannot contract together, the small field condition tells
us that

141 <O() 5 22M- kIR < O(1) M0 (66)
Ko<y

» at third order, we have two possible configurations

Naar ’

*~——o AV
| ko
AU, Gum
AW = Z -—e >J1
3= .
ky<jp IO
&y <k

(67)

For AY", one finds
(A S AM 5020 J M 0P R 2Ip R A~ 2 (68)
S AAME) M 0T = k)2 (69)
SAMAM 1) (70)

In the same way, one finds for 4>

“A(XZ,” S12M~((k]fk[,),/z)Mrl(/]»k(,)Mk, lM—k,/2M1‘((i‘~k,)/2) (71)
5,{2(/1MJ]/2) Mrl\ ~ 3v)(Jy —~ ky)/2) (72)
S AHAMAN ) (73)

» fourth and higher order terms can be treated similarly. We find the
same power counting with more and more small factors as the order
increases.

We do the same to bound the A, and A4, parts and get the announced
result

~ i1
10,G, ., <O(1) A" (%) x~ 1 (74)
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5.4. Lower Part
We introduce the angular sectors
0,G,=0,G ... =2t ) {Gne[A% % n.(G—C)n,]1,,G> (75)
oy oy

First we extract the degenerate part of the sum over the sectors, ie.,
the part (a; ~a,, &,). In order to do so, we define the almost diagonal part
of U, {with momentum close to 0 or 2 \/E ).

Udiagy = Y. naUnyg (76)
a~f. g
Then we write
8,G, =8,G0+0,GP (17
8,@‘f’=2tlelUdiagl(G~C)l/lUl G du(U) du(V) (78)

Keeping only the almost diagonal part for one of the AU allows us to
earn a factor M ~"/*= )2 in the small field region, thanks to Lemma 3.
Therefore, we can treat 9,G(” in the same way we controlled the higher
part and get the following bound

N 12 2 1
2,69 <o) i (%) (19)
o ag
We are left with
8,6V =23% Y j dx dy &(x, y)
ocl#«azz,ziz
a3, oy
X (G, %) a5 NG = CY oy Y)W 1) G (80)

=22 ¥ jduf(u)jdz
oxy # Xy, &y
oy, oy

XG5 2) oz, HG=C)mp (2 +u) ne(z+u, ) G (81)



Ward-Type Identities for 2D Anderson Model 345

In the following, we will note

77;”)( )zﬂy(x—)"*'u):’iy(x'*‘%)’)=’7y(x,J’“”) (82)

5.5. Sector Conservation and Unfolding

If we look at the vertex in momentum space, we have a factor

Ha(P1) Ao P2) Aa(P3) Fla(Pa) O(P1— P2+ P3— Pa) (83)

This leads to one of the following possibilities (recall that we defined ~ in
Eq. (39)):

oy o, and o, > ag
or

oy >~y and oy > d,
Thus

L=1* Y ¥ [&wadu|d{GrandG—CrnionGy  (86)

Jo= A2 Y [ew au |G G- C) @6y (87)

Now we can unfold the afa’f’ term, cf. Egs. (23) and (25).

Ih=22 Y Y [&u)du[d{Grat(G—C)ngn Gy (88)

axp B

IZ Il

o ~a
B =B

In order to decouple the ax’ and 8B’ operators, we insert
1=[o(z—2)d' = [ dk dz' e*==) (89)

Let us note ¢ the operator whose kernel is

(e*)(x, y)=e™* (x — y) (90)
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with this notation, we have

=Y ¥ j«:(u)dujdk

arff o >a
B =f

x (O™ ni(G—C)nge™"n 0 G) 91
=42y % fﬁ(u)dujdk
axff & ~a
B =p
X ([ G—CY i e~ I x G e™nl Gy (92)

We can adopt the following diagrammatic representation

BhB
x

Let us write explicitly the various incoming momenta at the half-
vertices

Z/ ;ff(“)dufdu(V)jdkjdwl...dw4dpl...dp4

= R

s
G(., w171 (P) e (p2) Sk — py + py) €727 2(G — C)(wy, ws3)
(p

x "5 5(p3) A (Pa) O pa— p3—k) eP =" G(wy, ) (95)

We can see on Eq. (95) that k allows to go from the sector f to the
neighboring sector f’. This implies that k is restricted to a small effective
domain around the origin which is a tube {, whose axis is orthogonal to
B and of size O(1) M~/ x O(1) M ~572, In the same way, k goes from «
to o, thus it must be in the intersection of both tubes {, and {,. Since the
angle between those tubes is at least M ~%/?, k has a norm which is at most
O(1) M9\ ~,
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Thus, we can freely insert a factor {,(k) which restricts the integration
on k to the ball of radius O(1) M%/2M ~. Of course, the same analysis
applies to J,.

L=i* Y % [ e&u)du k) d

arff o ~a
B =p

x (G, e*n (G~ C)nge™ "0 G) (96)

Jo=22 Y Y [ du k) dk

arBf o ~xa
B =B

x {trlng(G—C)nige=% ] Gne™ni’ Gy 97)

The point is that momentum conservation can be used in a much
more efficient way. If we suppose, in Eq. (95), that the momenta p,,..., p4
are in the very low slice 2 , then k will be at the intersection of two tubes

of width M~ and thus of norm less than O(1) M™2M —2,
We can introduce

4’0:614‘{0(1_C1)2C1+(C0_C1) (98)

where (, forces |k| <O(1) M"/2M =% This will give two terms for I,
(and Jy):
¢ a term I, (or J,) with {, having a very small transfer momentum k
e a term I, (or J,) with {o(1 —{¢,) which must have a leg above the
scale j,.

L=1+1, (99)

L=2% Y [&wadu[ k)

atff o ~a

B =p
x (G, ni(G—C)nze " n$)G> (100)

Let #,=#,1 | + 1., With 7, , having its support above the scale j,.

L= 3 T Y [ew |-t dk
G ig) #(L 1o L1) a2 B f o' =«
B =p
X (Gl €3G — C) g e~ n) G (101)

In the following, we will forget the indices i,,..., i, for shortness.
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The terms I, and J, have a high leg, so we treat them by an analogue
of Lemma 4.

Lemma 6.

A2 1
120, 1420 < O(1)(log A7) 2% <;> X = (102)

ag

Proof. Again, we write the covariance as two insertions of an
auxiliary field. Thanks to sector conservation, we have

L= 3 L (103)
10| < KM o2
LO)=22 Y % | &) du | dw[lolw)—Eiw)]
ax B, B v
X LGy (G—C)niGEpny Gy b, (104)
Then we write
50()1: <wtxwy>d/1(;((n) (105)

introducing a Gaussian random vector .
1(0) =22 [ [&4(w) = E(w) ] aw [ (V) du( U) degf)

xG< Y iyaa)aUn},W)>(G—C)(Znywy_gUnf;w)>G (106)
yo

astf

Now, we can perform a large field-small field decomposition and stairway
expansions in the small field region. The leading order term corresponds to
the insertion of A(w * U%/) and A*(@ » U’s2) C2l72%, This gives a factor

O(1) sup |, |?> x A2 x A2 M —Vo—7)2 (107)

Therefore, we need to control {sup |w,|*> dugw) 10 order to conclude. This
is done with the following lemma.

Lemma 7. Let o e R” be a centered Gaussian random vector with
covariance

<wawﬁ>d,u(;((o):5<x/i (108)
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There exists a constant C, such that for all N> 2

{sup Iwa|2>dy5(m)<co log N (109)

Proof. Using Holder’s inequality

{sup |walz>dy5(m) < <(Slip |wa')2p>¢11,/f;(m) < 14>}1Lq6(m) (110)

o

N Up
<<Z |wa|21’> (111)
a=1

dps(®)
SNVPL(2p— DNYVP 2N VP(p1YlP (112)
Then we take p=[log N] |

Thus introducing the vector @ costs only log A~'. Then J, can be
treated in the same way, completing the proof. |

We return now to the bound on I, and J,.

Lemma 8.

2\ 2
I, < O(1)(log A=) 41— (i) L (113)

g g

Proof. Again we have to get rid of the constraint between a and f.
We write

Z fa,ﬂzz fa,ﬂﬁ Z (foc,ﬁ+foc,ﬁ) (114)
atf aff a~f
=Y fup— X Y (fuprot fugro)Oap (115)
of 18] <M~T02 ap
:Zfa,ﬂ* Z Z<wawﬂfa,ﬂ+6+wmwﬂfa,ﬂ—+0>d;¢,§(m)
off 18l <M~h2 af (116)

Putting into the expression of /,, we get

L=IL+ Y [Is0)+I40)] (117)

(0] < M~/
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Le=72 [ &u) du [ €k) de [ du(v)

[ Z Na elkﬂ(u):l [ % /§ —zk (u)jl G (118)

a« B =p

160) = 42 | &) du [ 1) dk [ du(V) da ()

<G| % waen | (6O T wpmpeenp,| 6
a B
o ~o B =B ( 1 19)
I is obtained by changing f and p’ into § and f in the expression Is.
We get small factors from the coupling constants A% and the integra-
tion volume for k which is MM ~%: On the other hand, we must pay for
the resolvents and an extra M =752 sup |w,|? for Is=3 I5(0). Hence

2\2
Iall < O(1) A2~%~ 4”2</10> X% (120)

2\2
1
Il < O(1)(log A71) A1=7 = 4”2</1a> <~ 1 (121)

Now, we are left with J; on which we want to apply our Ward-type
identity. But we need k.kj to be large enough. We define
Ci(k)=0p (k) +ep (k) (122)

where 0. restricts the integration on k to the region k.k,z > A***. This
leads to

Jy=Jy+Js (123)
Jo=22 Y Y (e du [ epth) J,, (k) dk (124)
ot fB axa BB’
Yy
Joo (k) = tt[(G = C) e %] Gne™nPG) (125)
ﬁﬂ’
Lemma 9.

A2 1
||J4|<0(1)/1”3‘8<—> X = (126)
ag ag
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Proof. Let us write J, under the following form

Jo= Y [ewau[duv)

BB =p
G{/{zjdzna(.,z) T.(2) nalz, )| G (127)
T2 = [ 8p(z—2) dZ (1, (G — C) ™ =) (128)

7§ and 7'~ ~* are now to be considered as functions and no longer as
operators. A stairway expansion on (G— C), in the small field region,
proves that the leading contribution is obtained by restricting #,4 and 7, to
the very low slice j,. This yields

1740 < O(1) I 131G = C1 [ 18 (x)] dx (129)
(A2

<M ~H? <-—> A3TE (130)
ag

In order to get (130), we used the fact that our model is restricted to a
single cube so that the integration in the direction k4., is on a domain of
size 4727 instead of the decaying scale 1727 of ;.. The desired bound
follows easily. |

The previous lemma would extend when we study the thermodynamic
limit. In that case, when we work in a given cube 4, V is replaced by the
corresponding ¥V, whose covariance is

541:51/2)@161/2 (131)

The set of all y, is a partition of unity and each y, is a smooth function
with compact support around the corresponding cube 4. Then we can
introduce, y; smooth with compact support around the support 4 of y,
and equal to 1 for all points whose distance to 4 is less than A727¢
Lemma 9 can be extended provided we put further localization func-
tions at the very beginning of the expansion. In the expression of 0G |,

Eq. (75), we can replace the vertex function

I guy,..., Uy) =JfA(x, y)dx d)”h(uh x) 7 (X, uy) ny(us, y)n,(y, Ug)
(132)
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by the following one

-~

Tt ) = [ E 45, ) dx dy(an oy, Xy x2)(5, 1)

X (xan Wz, YY1y 2755 14) (133)
The error term is very small because of the fast decay of | on a scale

M/t << 27?7% and the functions y 7 force the tadpole to stay in a cube close
to 4.

5.6. Ward Term

Finally, we must deal with

Js=2 Y Y [ewdu0,k) . (k) dk (134)
arf ama BB’
B =5
We set
1
c, (135)

TP —E—io—(1-13)2
Our Ward-type identity relies on the identity
2ekg=(p+k)}—p*=2k.(p—ky)—k? (136)

=Clp+k)"' = Cp)™" =2k (p—kp)— K

—(1 =) Z(p+k)—2(p)] (137)

In momentum space, the tadpole insertion of /. can be written
BB’

T (k)=tr[n e *ny(G—C)]

=fdp np(p)e™Png(p+k)(G—C)p+k, p) (138)
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We insert Eq. (137) to get
(2k .k g} T (k) =tr[;7§37“’e""";7,,C,“‘(G— )]
—tr[nG e * G- C) C]
—2k.tt[ns(G—C) D};“’e"""] —227 (k)
+(1=2)tr[n4(G— C) plg(Ze™™ —e~*1)] (139)
(140)

Dy (x, y)= f dp e~ p—kg) np(p)

Now, we use the resolvent identity
G=C,—C,AVG=C,—GAVC, (141)

Since C and C, commute, we get
= —tr[ny e Fng AVG]+tr[ G AVl e n,]

(2k.k ) T (k) = —
—2k.tr[4(G — C) DYre~* ] — k2T (k)
(142)

+(1—12) trlng(G = C) iy (Ze ™ — e~ 1)

We put (142) back into the expression of J5, writing
(143)

J5= _JR+JL_JD_Jk2+JZ

where the notations refer directly to the various terms of Eq. (142).

Lemma 10.
1—1y gl —r—2v,—¢ ;2 g 1
iJpll £O(1)(log A7 ") A V2 — ) x~- (144)
a ag
a—ly 22—2r—4vy,—¢ }”2 2 1
ezl €O(1)(log A77) 4 T — ) x— (145)
a ag
=1y 12—F—2v,—¢& )"2 2 1
[/l <O(1)log A77) 4 G g e (146)

Proof. We can treat Jp, J,2 and J . the way we treated J, because we

have earned small factors:
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e for Jp, we earn something thanks to
k.Dg~I|K| M2y~ M~U=D M) (147)

but we have still the spatial integration of the tadpole to pay, which costs
0,
[ ax )(x)

< !k k’
Ko

<O(l)(logA~tya—2-e (148)

/gﬂl\ n oMoy M dk
<O(1)y MO M5 i 149
H 2kkﬁl e ( ) A2tvy 2 |kﬁl[ k// ( )
< O(1) M@ M =i Jog )~} (150)

and the spatial integration is in a volume O(1) M™o/D M +hx j=2-2,
Therefore

2\ 2
1ol <O(1)(log A1) 2= <i> L (151)

o o
o for J;2, we earn something from
|62 < Mo M —2 (152)

and the spatial integration of the tadpole has the same price as before.

2\ 2
1]l < O(1)(log rl)ﬁ”““”rﬂ(%) 2 (153)

» finally, for J5, we notice that X is an almost local operator whose

norm is proportional to 4% Thus, taking the commutator with e ~*" gives
a gradient term which is very small
I[Z, e ™ T <O(1) 2% k| (154)

We can conclude

FEACI |
qun<0<1)(1<>gr1)Az—f-%—e<;> NI (155)

ag
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We are left with —J,+J,

0,.(k)
—Jp==21 Y Y |&wdu| - dk
: aAfff x = J J2k.kﬂ,

B =p

xte[nlm e %5, AVG] Gy e* gl > (156)
0,.(k)
Jo=2 Y Eu) du | L dk
- xx ac'zztx J J‘z'kk/’”
B~
x (U[G AVl e %y, ] Gr,e®p' ) (157)

At this point, we use a diagrammatic representation to perform the connec-
tion with the heuristic presentation of Section 4. It is easy to see that we

have
S ﬁ'Aﬁ

g Aﬁ
JR=<—¢_.> and JL=<—¢——> (158)
a o o o
We take the degenerate part of the V away

V=% nsVn,+ Y ng¥n, (159)

y~B A y#B A

so that we can write

JR,L=J(R0.)L+J(R].)L (160)

JR', is the almost diagonal V part, it has a bound

(0) < —1 ri2—e E 2 l
[JR < O(1)log i~ ") A p Xa (161)

We integrate the V by parts in J§’,, and we use sector conservation
and unfolding to generate the 12 terms of Eq. (36).

Lemma 11. There exists v> 0 such that

g <otytoga )y (2w L
AL o) o

(162)
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where

¥ =min {(2—;’—4", —2v5), <V2+§—6>,

(l—r—2v2—v3—£),2(v1~—v2—r)—£} (163)

Proof. Let us bound the various terms of (36). First, we consider the
graphs without loops. We explain the bound for a typical one

’ ~

A ¢ - 164
of = = ( ————bmugp—
d=(—ssz )= () e

One can check that the analytic expression for 4 is

0,(k)

d=i* T Y Y [ewew duds| Lol die die’

at B ff o =a f=p 2k kg
BB B=f ymy
X <G”aeikq,](atlx)Gn;’—v)eik’.”)‘Gﬂ(ﬁ'—u)e—ik.”ﬂe-ik’.”(ﬂzi,)G> (165)

We bound .7 the way we bounded /, in Lemma 8.

o Our small factors are A* and the integration on k and k/, ie.,
(log A= 'y M7 M~/ and MM~

» we must get rid of the constraints on «, f#, and y. This is done by
introducing Gaussian random vectors and costs (M =742 log A=)
Finally we must pay for the resolvents.

Gathering all factors, we get

/12 3
st <0Nlog a1 22 (S (166)

a g

Now, let us see how we can pair the graphs with loops to get a small
result. For instance let us consider

Q O
Qi 5O

ﬂ"ﬂ ﬁ‘ﬂ"
= e ) (167)

-~
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We know that the momentum k at the first vertex is bounded by
K, M”20~ Therefore, we can find K, such that if the momentum &’ at
the second vertex is larger than K, MM ~7 in norm, we have a leg higher
than 2K, M™/2, This leads to the decomposition

oy = o DD oflow (168)

In o/, we have a high leg at the second vertex. But this leg can be
np (the thick line) and this would prevent us from making a stairway
expansion and getting a small factor. Yet, in that case, we would know that
at the first vertex, 7, (resp. n) had to be higher than K, M7/2M 7,
Therefore, in the same way we did in Lemma 10 we can show

12

3
|5 | < O(1)(log rl)ﬂz“ﬂﬂ(‘—) <1 (169)

g o
For /¥, we use the fact that the first graph is equal to the second

up to error terms.

o We change 04 (k)/2k.kp into Op(k)/2k .k, The remainder term
bears a factor

k. (kg—kp)l A727<O(1) AL —7=27m (170)
¢« We exchange the ends of the two dashed lines in the middle loop.
This amounts to commute first ¢ =% and #, and then e=* and #,. Thus

the error term has an extra factor
max(|k|, [k'|) MA < O(1) MPM —2Mh < O(1) A2 =27 (171)

In conclusion, we obtain

ARG 1
/5™ < O(1)(log A71) max[ 41 =7 =217 "% 220 ¢ <?> o

(172)

Taking v, small (but not too small) and r, v, and v, very small, the
various powers of A (standing for the small factors we earned) that we met
all along the demonstration are indeed positive. This concludes the Proof
of Theorem 1.

REFERENCES

1. L. Pastur and A. Figotin, Spectra of Random and Almost-Periodic Operators (Springer-
Verlag, 1992).



358 Magnen et al.

5]

. F. J. Wegner, Phys. Rev. B 19:783 (1979).

. R. Opperman and F. J. Wegner, Z. Phys. B 34:327 (1979).

. J. -M. Combes and P. D. Hislop, Localization for some continuous random Hamiltonians

in d-dimensions, J. Func, Anal. 124:149 (1994),

5. G. Poirot, Mean Green’s function of the Anderson model at weak disorder with an infra-red
cut-off, cond-mat/9702111, to appear in Ann. Inst. Henri Poincaré.

6. G. Poirot, Modéle d’Anderson a faible désordre, thése de I'Ecole Polytechnique (1998).

7. J. Magnen, G. Poirot, and V. Rivasseau, The Anderson model as a matrix model, Nucl.
Phys. B ( Proc. Suppl.) 58:149 (1997).

8. J. Feldman, J. Magnen, V. Rivasseau, and E. Trubowitz, in The State of Matter (World
Scientific, 1994), p. 293.

9. J. Feldman, J. Magnen, V. Rivasseau, and E. Trubowitz, Europhys. Lett. 24:521 (1993).

o



