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Using the particular momentum conservation laws in dimension d = 2, we
rewrite the Anderson model in terms of low-momentum long-range fields, at the
price of introducing electron loops. The corresponding loops satisfy a Ward-
type identity, hence are much smaller than expected. This fact should be useful
for the study of the weak-coupling model in the middle of the spectrum of the
free Hamiltonian.

1 Centre de Physique Theorique, Ecole Polytechnique, 91128 Palaiseau Cedex, France.
2Technische Universitat, Fachbereich Mathematik Strasse des 17 Juni 136, D 10623 Berlin,

Germany.

Ward-Type Identities for the Two-Dimensional
Anderson Model at Weak Disorder

Jacques Magnen,1 Gilles Poirot,1,2 and Vincent Rivasseau1

Received February 9, 1998

KEY WORDS:

1. INTRODUCTION

We consider a continuous Anderson model in dimension d = 2. The model
is defined through the following Hamiltonian

where V is a Gaussian random field which is a regularized white noise.
We are interested in the density of states at weak disorder (A << 1) and

in the free spectrum (at energy E>0). It is well known(1) that because of
ergodicity, the density of states is a deterministic quantity given by

where G is the resolvent, or Green's function, of the system
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The limit A -» oo stands for the fact that we must work in a finite volume
to have well defined quantities and then take the thermodynamic limit.

Thus the problem amounts to studying the mean Green's function.
Perturbations suggest that

where the self-energy E is given at leading order by the Born approxima-
tion,(2,3)

which yields a finite imaginary part of order A2.
In this paper, we derive a Ward type identity which should allow to

control the mean Green's function for initial imaginary part of order A2 + E,
i.e., much smaller than the expected final imaginary part. This is not enough
to go to the limit a -» 0 which is in fact equivalent to a ~ A3 thanks to spec-
tral averaging techniques(4) or equivalently complex translation of the
potential.(5) Nevertheless, we think that this kind of identity should play a
role in studying the mean Green's function of the model and in proving its
expected long range decay.

We give first a heuristic presentation of this identity which is a little
bit complicated. Then we will derive it in a simplified model in a single
cube of size A ~ 2 ~ e . This result, when combined with a polymer expansion
of the resolvent would allow to control the thermodynamic limit of the
model with a = A2+e in the same way than refs. 5 and 6.

2. PHASE SPACE PICTURE AND MATRIX MODEL

Our study is based on a phase space multiscale analysis.(5,7,6) We
divide the momentum space into slices such that in the jth slice Ej, we
have M-j-1< \p2 — E \ < M - j for some integer M > 2 . Then the real space
is divided into lattices Dj of cubes of dual size MJ.

The point is that the potential V seen as an operator V has a kernel
in momentum space given by
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When p and q are restricted to low slices, i.e. very close to p2 = E, knowing
the momentum transfer p — q allows to recover back the pair {p, — q } ( 8 , 9 )

so that the potential has a very strong matrix flavor.(7)

We call nj a smoothed projector on the slice Ej that we further divide
into angular sectors SJ

X of width M- j / 2 , corresponding to some na. We
write a for the opposite sector to a. and we introduce also the notation

For any operator A we write

Finally, for any lattice Dj of cubes A, we can make an orthogonal decom-
position of the field V into a sum of fields VA, the support of VA being on
a close neighborhood of A.(5) Then, using the matrix aspect of the poten-
tial, we can derive the following estimates.(5,6)

Lemma 1. There are constants K1 and K2 such that for all j < k,
a > 1 and A e Dk

Lemma 2 (Tadpole-free operators). There are constants K1

and K2 such that for all j < k , a > 1 and A, A' e Dk

where : : stands for the Wick ordering

Lemma 3 (Almost diagonal operators). There are constants
K1 and K2 such that for all j<k, 0 < r < 1, a> 1 and AeDk

where
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3. RESULT

We are looking at a simplified model in a single cube: in R 2 /A~ 2 ~ e Z 2

we consider the following Hamiltonian

where V is a Gaussian random field with translation invariant covariance
Ee<<C(R2) such that E 1 / 2 e < 0 ( R 2 ) (the square root being taken in
operator sense). The result could be extended to E e f ( R 2 ) but the devel-
opment would be much heavier.

We are interested in computing the mean Green's function

for which we have the following result

Theorem 1 (Ward type identity). There exists v>0 such that
for all a < A2

where C is the renormalized propagator at leading order (Born approxima-
tion).

Moreover, we can iterate the development in order to obtain an
asymptotic expansion to all orders.

This result together with a polymer expansion(5) would allow to control
the thermodynamic limit for imaginary part

Therefore we can investigate the mean Green's function up to a region with
imaginary part much smaller than the expected final one. We cannot for
the moment go to the real axis which would require to have v > 1.
Nevertheless, we think that this kind of identity should play a role in the
study of the mean Green's function and of the density of states.

4. HEURISTIC PRESENTATION

Let us assume that we are working in the region of momenta
| p 2 - E \ < M ~ J 1 , where
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We are looking at the off-diagonal part of the potential, i.e., the VB,'s
such that c is quite different from B or B = n + B. We know that in this case,
sectors are preserved up to M~ J o / 2 and even better.(6) If we introduce a
counter-term S and perform one step of perturbation, e.g., by putting an
interpolation parameter on the potential and the counter-term, we get a
remainder term which looks like

We can integrate the V by parts and get

Sector conservation tells us that there are two possible configurations:

We used the fact that V being almost ultra-local we can identify both
ends of its propagator (the wavy line) and replace it by the dashed line
which corresponds to the low momentum channel. Furthermore, for the
first term, we used
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where At stands for the transposed operator, whose kernel is

The first configuration corresponds to the insertion of two fields of
very low momentum, i.e., to almost diagonal operators, and as such is very
small. Thus we just need to see how the second term, which is the insertion
of a tadpole, will kill the counter-term, at least at leading order.

First, we can remark that if a and B. are far enough from each other,
the momentum flowing into the loop has a size M~j1 being at the intersec-
tion of two tubes of size M~Jo/2 x M ~ J 1 . But we can go further: if all the
incoming legs at the vertex are in the "very low" slice EJo , the ingoing
momentum has a size M~J 0 . This means that either we have a very small
momentum flowing into the loop or one of the four legs is "high," which
means that |p2 — E| is large. This allows to earn a small factor.

If we set the counter-term equal to the tadpole with the bare
propagator C0, we are led to study

where the slashed line stands for G — C0. In momentum space the contribu-
tion of the loop is

The key point is then to notice that when p is close to kB, the center of the
sector B in momentum space, one can write

Using the resolvent identity
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we get

where the thick line stands for nB.
The perturbative reformulation of this identity is the following. Starting

from a vertex function

we have the identity

This looks very much like a perturbative Ward identity in quantum elec-
trodynamics where we express the vertex function F2,1 (between an elec-
tron, a positron and a photon) in terms of the difference of two electron
propagators.

Once again, we integrate by parts the V which has been taken down.
This leads to six possible graphs

Then we use sector conservation and perform various unfolding opera-
tions. In order to illustrate the process, let us show how it works on the
following typical term (using the fact that a wavy line is almost a S function)
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In the end we obtain 12 terms which are

We have two types of graphs:

• graphs without electron loops, containing very low momentum field
insertions,

• and graphs with remaining electron loops.

The graphs in the first category are small. In the second category, the 3rd,
4th, 9th and 10th graphs form two pairs which almost compensate each
other (3-9 and 4-10).

The point is that when all the incoming legs at the various vertices are
"very low," the momenta flowing into the loops have size M~J0.. This
implies that the dashed lines stand for propagators which decay on a length
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scale MJ0. But nB (the thick line) decays on a scale MJ1 «MJ0, therefore
it is almost-local with respect to the scale MJ0 and we can approximate it
by a point. This means that the graphs number 3 and 9 as well as the num-
ber 4 and 10 compensate each other, up to a gradient term in M ~ ( J 0 ~ J 1 ) .

This conclude our heuristic description of the reasons for which
Theorem 1 holds. The next section is devoted to the proof.

5. PROOF OF THEOREM 1

5.1. Notations

First of all, we introduce various notations

• We define ^ = n | = n j 1 and | =n| =(1 — n j 1 ) , so that every
operator A can be written

• for 0 < r < 1 to be fixed later, we define

• for K=O(1) we note

• finally we introduce

5.2. Starting the Development

We define the counter-term through the self-consistent equation

Then we set
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so that we can write

Then our problem reduces to the study of

where we have integrated the V by parts from (46) to (47).
If we plug in the "high" and "low" slices we get

5.3. Higher Part

We can quite easily deal with the case (i1,..., i4) = (|,..., j ) because we
have a high leg.

Lemma 4.

Proof. We start with

then, we write the covariance E as the integration of two insertions of an
auxiliary field U.
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At this point we perform a large field versus small field decomposi-
tion(5,6)

where e is a smooth function which forces

The last condition is possible because U and V cannot contract
together, therefore we can use Lemma 2 on tadpole-free operators. Thanks
to Lemmas 1 and 2, we find that the large field contribution will be small,
of order

for some constant K.
In the small field region, we will use the fact that we have a high leg

so that in some sense we can make perturbations. Suppose that ni4 is the
high leg at scale k0, the operator A U i 3 i 4 will have a size AM~k0/2 »A2. But
if we perform a resolvent expansion on AUi3i4G we will get AU i3i4Ck0AvG
thus we earn an extra factor AUi3i4Ck0 whose norm is AMk0/2 << 1. Then we
can iterate the process until either we fall back to a scale of order j0 or we
have earned enough small factors.

Lemma 5 (Stairway expansion):

where Ck = nk C and n0 = 1.
Of course, we have a similar result for G(l — nm) by expanding to the

left.
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Proof. The proof is by induction on m thanks to the resolvent identity

that we write as

In Eq. (60) we can group the various terms according to whether they
end by a C, a ZG or a KG. Then we can introduce a diagrammatic
representation

As and Ac can be represented in the same way by changing the rightmost
term.

We apply the stairway expansion on each leg which has its momentum
above the scale j0 and is not linked to a long enough stairway. This allows
to show that each field insertion behaves like O( 1) A2. Furthermore, we
earn a factor Am j 1 / 2M t 1 j 1 / 2~A1~T 1 , thanks to the AU which have a high
leg. Indeed, the corresponding insertion of A U will transform into the inser-
tion of a sum of stairways. The A v part has the following form:

• the second order insertion is
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Since U and V cannot contract together, the small field condition tells
us that

• at third order, we have two possible configurations

For A (1), one finds

In the same way, one finds for A(
3
2)

• fourth and higher order terms can be treated similarly. We find the
same power counting with more and more small factors as the order
increases.

We do the same to bound the Ac and AE parts and get the announced
result
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5.4. Lower Part

We introduce the angular sectors

First we extract the degenerate part of the sum over the sectors, i.e.,
the part (a1 ~a1, a2). In order to do so, we define the almost diagonal part
of | U\ (with momentum close to 0 or 2 /E).

Then we write

Keeping only the almost diagonal part for one of the AU allows us to
earn a factor M ~ r j 0 / 4 = Ar/2 in the small field region, thanks to Lemma 3.
Therefore, we can treat d ,G ( 0 ) in the same way we controlled the higher
part and get the following bound

We are left with
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In the following, we will note

5.5. Sector Conservation and Unfolding

If we look at the vertex in momentum space, we have a factor

This leads to one of the following possibilities (recall that we defined ~ in
Eq. (39)):

Thus

Now we can unfold the aBa'B' term, cf. Eqs. (23) and (25).

In order to decouple the aa' and BB' operators, we insert

Let us note eik- the operator whose kernel is
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with this notation, we have

We can adopt the following diagrammatic representation

Let us write explicitly the various incoming momenta at the half-
vertices

We can see on Eq. (95) that k allows to go from the sector B to the
neighboring sector B'. This implies that k is restricted to a small effective
domain around the origin which is a tube £B whose axis is orthogonal to
B and of size 0(1) M ~ J 1 x 0(1) M~Jo/2. In the same way, k goes from a
to a', thus it must be in the intersection of both tubes £a and EB. Since the
angle between those tubes is at least M~ r J 0 / 2 , k has a norm which is at most
0(1) M r J 0 / 2M~ J 1 .
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Thus, we can freely insert a factor C0(k) which restricts the integration
on k to the ball of radius 0(1) MrJo/2M~Jl. Of course, the same analysis
applies to J0.

The point is that momentum conservation can be used in a much
more efficient way. If we suppose, in Eq. (95), that the momenta p1,,..., p4

are in the very low slice EJ 2 , then k will be at the intersection of two tubes
of width M~j2 and thus of norm less than O ( 1 ) M r J o / 2M~3.

We can introduce

where £1 forces \k\ < 0(1) MrJt0/2M J2. This will give two terms for I0

(and Jo):

• a term I1 (or J1) with C1 having a very small transfer momentum k

• a term I2 (or J2) with £0(1 — C1) which must have a leg above the
scale j2 •

Let na = na| + na||, with na|| having its support above the scale j2.

In the following, we will forget the indices i1;,,..., i4 for shortness.
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The terms I2 and J2 have a high leg, so we treat them by an analogue
of Lemma 4.

Lemma 6.

Proof. Again, we write the covariance as two insertions of an
auxiliary field. Thanks to sector conservation, we have

Then we write

introducing a Gaussian random vector w.

Now, we can perform a large field-small field decomposition and stairway
expansions in the small field region. The leading order term corresponds to
the insertion of A(w * UJ0J0) and A2(w * UJ0j2) Cj2Vj2jj0. This gives a factor

Therefore, we need to control <sup |wa |2>dUj(w) in order to conclude. This
is done with the following lemma.

Lemma 7. Let weRN be a centered Gaussian random vector with
covariance
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There exists a constant C0 such that for all N > 2

Proof. Using Holder's inequality

Then we take p = [log Af]

Thus introducing the vector w costs only log A - 1 . Then J2 can be
treated in the same way, completing the proof.

We return now to the bound on I1 and J1.

Lemma 8.

Proof. Again we have to get rid of the constraint between a and B.
We write

Putting into the expression of I1, we get
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Lemma 9.

where OB' restricts the integration on k to the region k.kB ,>A2 + v3. This
leads to

Now, we are left with Jl on which we want to apply our Ward-type
identity. But we need k.kp, to be large enough. We define

I5 is obtained by changing B and B' into B and B' in the expression I5.
We get small factors from the coupling constants A2 and the integra-

tion volume for k which is MrJ°M~2j2. On the other hand, we must pay for
the resolvents and an extra M ( 1 - r ) J o / 2 sup |wa|2 for I5 = EI5(O). Hence
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Proof. Let us write J4 under the following form

n(z) and n(- z' u) are now to be considered as functions and no longer as
operators. A stairway expansion on (G— C), in the small field region,
proves that the leading contribution is obtained by restricting and nB' to
the very low slice j0. This yields

In order to get (130), we used the fact that our model is restricted to a
single cube so that the integration in the direction kB., is on a domain of
size A ~ 2 ~ e instead of the decaying scale A-2-v3 of eB.. The desired bound
follows easily. |

The previous lemma would extend when we study the thermodynamic
limit. In that case, when we work in a given cube A, V is replaced by the
corresponding VA whose covariance is

The set of all xA is a partition of unity and each yA is a smooth function
with compact support around the corresponding cube A.(5) Then we can
introduce, xA smooth with compact support around the support Z of xA

and equal to 1 for all points whose distance to Z is less than A~2~e.
Lemma 9 can be extended provided we put further localization func-

tions at the very beginning of the expansion. In the expression of dG^,
Eq. (75), we can replace the vertex function
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by the following one

The error term is very small because of the fast decay of ni on a scale
MJ1 <<A~ 2 ~ e and the functions xA force the tadpole to stay in a cube close
to A.

5.6. Ward Term

Finally, we must deal with

We set

Our Ward-type identity relies on the identity

In momentum space, the tadpole insertion of Jaa' can be written
BB'
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We insert Eq. (137) to get

Now, we use the resolvent identity

Since C and Ct commute, we get

We put (142) back into the expression of J5, writing

where the notations refer directly to the various terms of Eq. (142).

Lemma 10.

Proof. We can treat JD, Jk2 and JE the way we treated J4 because we
have earned small factors:



354 Magnen et al.

• for JD, we earn something thanks to

but we have still the spatial integration of the tadpole to pay, which costs

This is because we have

and the spatial integration is in a volume 0(1) Mr(J0/ /2) M + J 2 xA - 2- e.
Therefore

• for Jk
2, we earn something from

and the spatial integration of the tadpole has the same price as before.

• finally, for JE, we notice that E is an almost local operator whose
norm is proportional to A2. Thus, taking the commutator with e~ik- gives
a gradient term which is very small

We can conclude
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We are left with -JR + JI,

At this point, we use a diagrammatic representation to perform the connec-
tion with the heuristic presentation of Section 4. It is easy to see that we
have

We take the degenerate part of the V away

so that we can write

J ( 0 )
L is the almost diagonal V part, it has a bound

We integrate the V by parts in J ( 1 )
L , and we use sector conservation

and unfolding to generate the 12 terms of Eq. (36).

Lemma 11. There exists v>0 such that
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where

Proof. Let us bound the various terms of (36). First, we consider the
graphs without loops. We explain the bound for a typical one

One can check that the analytic expression for A1 is

We bound A1 the way we bounded I1 in Lemma 8.

• Our small factors are A4 and the integration on k and k', i.e.,
(logA-1) Mrj0/2M-j2 and M r J 0M-2 j 1 .

• we must get rid of the constraints on a, B, and y. This is done by
introducing Gaussian random vectors and costs ( M ( 1 - r ) j 0 / 2 log A - 1 ) 2 ,
Finally we must pay for the resolvents.

Gathering all factors, we get

Now, let us see how we can pair the graphs with loops to get a small
result. For instance let us consider
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We know that the momentum k at the first vertex is bounded by
KiM r J 0 / 2 M~ J 2 . Therefore, we can find K2 such that if the momentum k' at
the second vertex is larger than K2Mrj0M~j2 in norm, we have a leg higher
than 2K1 M

rJo/2. This leads to the decomposition

In Ahigh, we have a high leg at the second vertex. But this leg can be
nB (the thick line) and this would prevent us from making a stairway
expansion and getting a small factor. Yet, in that case, we would know that
at the first vertex, nB' (resp. nB") had to be higher than K 1 M r J 0 / 2 M~ J 2 .

Therefore, in the same way we did in Lemma 10 we can show

For Alow, we use the fact that the first graph is equal to the second
up to error terms.

• We change O B ( k ) / 2 k . k B into 0B(k)/2k.kB. The remainder term
bears a factor

• We exchange the ends of the two dashed lines in the middle loop.
This amounts to commute first e~ ik . and nB and then e~ik' and nB. Thus
the error term has an extra factor

In conclusion, we obtain

Taking V1 small (but not too small) and r, v2 and v3 very small, the
various powers of A (standing for the small factors we earned) that we met
all along the demonstration are indeed positive. This concludes the Proof
of Theorem 1.
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